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Abstract 

In acquiring digital images, electronic systems not only 
detect optical signals but also convert them into a digital 
form for further image processing and exchange. Practical 
systems can introduce error during color calibration, and 
when acquiring image scene information. For large 
populations, it is often assumed that the error can be 
modeled as a random variable having a zero mean. In the 
case of a single color instrument, camera or scanner, 
however, error due to deterioration of a physical standard, 
optical filter or detector will introduce a bias into the 
measurement or image data. This error is modified as the 
signals are transformed (processed) into their final form. An 
error-propagation method is shown to describe the influence 
of the data-processing path on the magnitude of bias error. 
This approach is related to the propagation of image noise, 
or variance. The analysis is applied in examples drawn from 
color-measurement and digital image processing. 

Introduction 

When making color measurements, we can think of 
instrument uncertainty as introducing an error into the 
(color) signal of interest. The same can be said of the 
acquisition of a digital image where pixel-to-pixel noise and 
color calibration errors can occur. We often assume that the 
error can be modeled as a random variable having a zero 
mean. For a single color instrument, however, a calibration 
error can introduce a consistent bias. 

Color-measurement signals and digital images are 
usually transformed between several common color spaces. 
Therefore, an analysis of the way signal transformations 
influence the magnitude of color-signal error is useful when 

1,2comparing performance with system tolerances. These 
results can then be used to set limits for both instruments 
and physical standards. 

One tool for the evaluation of error or variation in 
3 signal processing is error-propagation analysis, where 

specific signal processing steps can be described by their 
corresponding transformations of the error statistics. The 
most common use of this method is the propagation of the 
second-order statistics, variance and RMS error. 

4Livens addressed the combination of stochastic 
instrument errors and signal quantization. He showed that 
the combined variance is found by adding the effective 
variance of each noise source, as for independent sources. 
Gonzalez, et al., evaluated the practical limits to color 

*accuracy in terms of the color-difference metric, ∆E94 . 
They compared results with and without color management, 
and pointed out requirements for ICC device profiles. 

In this paper, we address the propagation of first-order 
statistical error, bias. This can be applied to a consistent 
error component due to, e.g., instrument drift, deterioration 
of a physical standard, or signal quantization. 

Bias Error 

If an observed signal is subject to error, it can be expressed 
as the sum of true value and bias, 

p̂ = p + bp , 

where p̂  is the observed value, p the true value, and bp the 
bias error. For many measurements or digital images, both 
the true and bias values vary, so we can define the bias 
using statistical expectations 

p̂bp = E[ ]− µ p . (1) 

where E is the expected value and µ p  is the true (unbiased) 
mean. 

A matrix-vector notation is usually adopted for systems 
with related sets of (color) signals. This is used in the 
Appendix, where the transformation, or scaling, of the bias 
error due to signal transformations is approximated using a 
derivative matrix in Eq. (a7). 

Matrix 
The propagation of bias error for a simple matrix 

transformation of a set of color signals can be understood as 
a special case of Eq. (a6). For example, 

q = Mp .  (2) 

Since each element of the matrix, M, is a constant, the 
elements of the first derivative matrix, JM , are simply the 
matrix coefficients. The resulting bias in q is, 
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pq Mbb ≅ .        (3) 

XYZ to CIELAB 
Bias error propagation for a common colorimetric 

transformation, from tristimulus values (X,Y,Z) to CIELAB 
coordinates (L*, a*, b*) can be also be modeled. Here we 
assume that the bias in the measured tristimulus values is 
that evident after the division by those of the white 
reference, ( nnn Z,Y,X . For values of  nX/X ,  nY/Y , 

008860 .Z/Z n >  the derivative matrix is 
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The bias propagation is given by Eq. (a6), 

XYZ*b*a*L bJb ≅ .    (5) 

McDowell
6

 gave several ‘rules of thumb’ for the 
propagation of reflectance factor measurement error to 
CIELAB. He investigated the relationship between spectral 
reflectance error and CIELAB *

abE∆  using the 928 color 
patches of the ANSI IT8.7/3 CMYK output characterization 
target. 

He found that a neutral 2% change in the measured X, 
Y, Z values (from reflectance factor measurements) resulted 
in an average *

abE∆  of 0.5 and a maximum of 0.9. If, 
however, the error was in the Z value, due to yellowing of 
the white reference, the average *

abE∆  was 0.9. Similarly, 
leaving the Y and Z values unchanged and changing the X 
value by 2% resulted in an average *

abE∆  = 1.8. 
If we interpret these nstrument errors as bias 

introduced into the X, Y, Z values, the above error-
propagation analysis can be compared with McDowell’s 
computed results. This was done and the results do predict 
the actual measurement results. Table 1 summarizes the 
comparison. Figure 1 shows the *

abE∆  that results from a 
2% nonselective bias, plotted as an a*-b* surface for 

.*L 50=µ  

CRT Gamma 
A common color encoding specification for the 

interchange of digital ages sRGB.7,8 This was 
developed to facilitate viewing of images on computer 
CRTs, and so includes the color characteristics of a 
reference monitor. This reference monitor is characterized 
by the monitor phosphor tristimulus values, and (mean) 
signal transfer function. The transfer function is modeled by 
an equation for output luminance.9 For an input signal, d, 
[0-1] the resulting CRT luminance factor is 

( γ
21 kdkI += ,     (6) 

where k1 and k2 are the system gain and offset and γ is the 
CRT gamma. In general, the gain and offset values are 
under the control of the user, by way of the contrast and 
brightness controls. The gamma value is primarily set by the 
CRT design. Since most CRT color evaluations require 
estimation of the effective gamma, it is useful to understand 
the sensitivity of the above luminance model to variations in 
the gamma value. If a monitor deviates from expected 
performance by a bias in the gamma value, the bias 
propagation is given by Eq. (a4) 

 ( ) γ
µγ bdlogdb eI  = ,        (7) 

where k1 and k2 have been set to 1 and 0. For a true value of 
µγ = 2.2 and bias, bγ = 0.15, Fig. 2 shows the CRT transfer 
curves. The luminance factor bias that would result from 
this gamma error was then computed directly and via Eq. 
(7), with the results plotted in Fig. 3. The overestimation of 
the negative bias is due to the series approximation of Eqs. 
(a4) and (a6). 

Table 1. Comparison of bias analysis, via Eq. (4) and 
McDowell results (in italic), for the IT8 data set. 

  % bias  *
abE∆   

 X Y Z average max. 

Nonselective -2 -2 -2 0.46 
0.5 

0.87 
0.9 

Low X -2 0 0 1.80 
1.8 

3.01 
3.0 

Low Y 0 -2 0 1.96 3.32 

Yellowing 0 -2 0.68 
0.7 

1.18 
1.2 
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Figure 1. *
abE∆  for 2% bias in X, Y, Z for .*L 50=µ  
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Figure 2. CRT characteristics: γ = 2.2 and b = 0.15 • 

The derivative matrix of Eq. (4) was then used to 
propagate the luminance factor error to CIELAB. The 
resulting bias in L* is plotted in Fig. 4. We again observe 
good agreement between bias error-propagation and direct 
calculation. 

Conclusions 

The analysis of the propagation of bias errors during signal 
processing can be used in conjunction with direct error 
computation. In all cases described, the error propagation 
method gave similar results to those computed directly. The 
method, therefore, can be expected to provide predictions of 
color measurement and calibration performance for a wide 
range of practical transformations. In many cases, the error 
transformations can be inverted, facilitating their application 
to component tolerancing and subsystem specification. 
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Figure 3. Luminance factor [0-1] bias for bγ = 0.15. The solid line 
is the point-by-point difference, dashed is from bias equation. 
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Figure 4. Bias in L* due to bγ = 0.15 , (in L* units [0-100]). The 

solid line is the point-by-point difference, dashed is from bias 
equations. 
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Appendix I: Bias of a Function of a Biased 
Random Variable 

We are given the function f ( )  of the random variable, x,x 
which is corrupted with a bias error. If x̂  is the biased 
random variable, its expected value can be written as 

x̂E[ ]= bx + µ x . (a1) 

where bx is the bias and µx  is the true (expected) value. We 
define the bias of f ( )  asx 

b f = E[ f ( )]− f ( )
 (a2) 

x̂ µ x

If we expand f about µx in a Taylor series and take 
expectations 

E[ f ( )]≅ f ( )+ f ′( )bx + 0.5 f ′ ( )σ x 
2 

, (a3) x̂ µ x µ x µ x

where 

∂2 f
f ′( )= ∂

∂ 
f

x 
and f ′′( )=

∂2 x
.µ x µ x 

x =µ x x =µ x 

Substituting Eq. (a3) into Eq. (a2), the bias error in 
f ( )  can be approximated by 

bf ≅ f ′ bx + 0.5 f ′′σ x 
2 . 

The RHS shows the two components of the bias in f. 
The first is due to the bias in x̂  and the second due to its 
variation. Here we will only consider the first source, bias, 
since it will usually dominate, so 

bf ≅ f ′ bx . (a4) 

Similar expressions can be developed for multivariate 
transformations. Let x and y be vectors, related by f 

y = f ( ) ,  (a5)x 

where 

x = [x1 , x2 ,...,xn ]T , y = [y1 , y2 ,..., ym ]T 
, 

 f1(x1 , x2 ,� ,xn ) 

f ( )= 


 

f2 (x1 , x2 ,� , xn )
 

x 
�  

 
 fm (x1 , x2 ,� , xn )

 

and for color image processing, m = n = 3. If the bias in 
each component signal of x is written as a vector 

]Tbx = [bx1 
,bx2 

,�,bx , 
n 

the output bias vector, is 

by ≅ Jf bx , (a6) 

where 

 ∂y1 ∂y1 ∂y1  
� ∂x1 ∂x2 ∂xn 

 
 
 ∂y2  

�

Jf =  ∂x1 
 

  
� �  

∂ym ∂ym  

 ∂x1 ∂xn  

,  (a7)


and each element of Jf  is evaluated at (µ x1 
,µ x2 

,�,µ x ) . 
n 
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